HEPATOPROTECTIVE ACTIVITY OF EXTRACTS FROM STEM OF *MUSSAENDA ERYTHROPHYLLA* LAM. AGAINST CARBON TETRACHLORIDE – INDUCED TOXICITY IN RATS

M.CHINNA ESWARAIAH ¹ T. SATYANARAYANA²

For author affiliations, see end of text

This paper is available online at www.jprhc.com

ABSTRACT

Mussaenda erythrophylla (Rubiaceae) is native to western tropical Africa, occasionally seen in gardens and parks as ornamental plant in India. The Hepatoprotective activity of ethyl acetate and methanol extracts of *M. erythrophylla* (*ME*) Stem against carbon tetrachloride (*CCl₄*) induced liver damage in Wistar albino rats. Ethyl acetate and methanolic extracts of *ME* (100, 200mg/kg.p.o.), were administered respectively, Silymarin (25 mg/kg.p.o.) was given as reference standard. The stem extracts were effective in protecting the liver against the injury induced by CCl₄ in animals. This was evident from significant reduction in serum enzyme, SGOT, SGPT, ALP and Total bilirubin (TB). Various pathological changes like centribular necrosis and vacuolization were observed in CCl₄ treated rats, which were significant protective activity in groups treated with ME and silymarin. It was concluded from the study that ethyl acetate and methanolic extracts of ME possess hepatoprotective activity against CCl₄ induced hepatotoxicity in rats.

Keywords: Hepatoprotective, Carbon tetrachloride, *Mussaenda erythrophylla*, Silymarin.
INTRODUCTION

Mussaenda erythrophylla (Rubiaceae) is native to western tropical Africa, occasionally seen in gardens and parks as an ornamental plant in India and is commonly known as mussenda (telugu), nagavalli (Sanskrit) and red flag bush (English)\(^3\). It is a perennial, evergreen shrub with branched tap root system. The roots are useful for cough, jaundice and when chewed acts as an appetizer. A number of triterpenoids and glycosides were reported. \textit{mussaenda genus viz.,} contains mussaendosides \(U(1)\) and \(V(2)\)\(^4\), mussaendosides \(G(1)\) and \(K(2)\) are two new triterpenoid saponins\(^5\), mussaendosides \(A-C, M\) and \(N\) with cyclolanostene type aglycone \(^6\) and aureusidin\(^7\), iridoid glycosides\(^7\). The pharmacological activities reported from Mussaenda species were diuretic, antiphlogistic, antipyretic and effective in laryngopharyngitis, acute gastroenteritis and dysentery and also anti-fertility activity\(^8\). The evaluation of the stem of \textit{M.erythrophylla} in the treatment of liver disease has not been reported in the laboratory animals. The present studies were performed to assess the hepatoprotective activity in rats against carbon tetrachloride as hepatotoxic to prove its claim in the folklore practices against liver disorders.

MATERIALS AND METHODS

PLANT MATERIAL

The stem of \textit{Mussaenda erythrophylla} was procured from M.V.P colony, Visakhapatnam, in the month of April 2006, (Voucher number TSN/DOP/ME 0406). The authentication of the plant was done by prof. M. Venkaiah, Dept. of Botany, Andhra University, Visakhapatnam.

PREPARATION OF EXTRACT

Freshly collected plant material was shade dried at room temperature and coarsely powdered in Wileymill. The powdered stem (1kg) was extracted successively with hexane, ethyl acetate and methanol using soxhlet apparatus. The crude extract was evaporated to dryness in a rotary film evaporator (Roteava,Equitron, Medica instrument, India) and found to be 2.5 gms, 30 gms and 25gms respectively. Preliminary phytochemical screening of ethyl acetate extract of \textit{M. erythrophylla} stem revealed the presence of steroids, triterpenoids and flavonoids; methanol extract tested positive for glycosides, tannins and saponins.

The constituents present in the ethyl acetate and methanol extracts of \textit{M.erythrophylla} stem initiated to carry out the hepatoprotective activity. The ethyl acetate and methanol extracts were subjected to hepatoprotective activity in rats. Silymarin was used as positive control at dose of 25mg/kg.p.o. All the test substances were suspended in vehicle i.e. 5% acacia mucilage. The extracts were tested for activity at doses of 100mg/kg and 200mg/kg.p.o.

DRUG AND CHEMICALS

\textit{CCL}\(_4\) was obtained from Poona Chemical Laboratory, Pune, India. Silymarin-Microlab, Bangalore, Karnataka, India. Estimation kits-Span Diagnostics, Surat, India. All other chemicals were obtained from local sources (Sai chemicals, Visakhapatnam) and were of analytical grade.

ANIMALS

\textit{Wistar albino rats of either sex weighing between 200-250 gm were obtained from M/s. Mahavir Enterprises, Hyderabad. The animals were housed under standard environmental conditions (temperature of 22 ± 1°C with an alternating 12 h light – dark cycle and relative humidity of 60 ± 5%), one week before the start and also during the experiment as per the rules and regulations of the Institutional Ethics Committee and by animal regulatory body of the government (Regd: No: 516/01/A/CPCSEA). They were fed with standard laboratory diet supplied by M/s. Rayans biotechnologies Pvt. Ltd., Hyderabad, and water \textit{ad libitum}}
CARBONTETRACHLORIDE-INDUCED HEPATOTOXICITY

The animals were divided into seven groups of six animals each. Group-I served as normal control received 5% acacia mucilage (1 ml/kg.p.o) daily once for 7 days. Group-II served as toxic control and received CCl₄ (0.5 ml/kg i.p) daily once for 7 days. Group-III was treated with the reference drug Silymarin (25 mg/kg .p.o) and followed by CCl₄ (0.5 ml/kg i.p) daily once for 7 days. Groups IV-V were treated with methanol extract of M. erythrophylla stem at doses of 100 and 200 mg/kg p.o. in acacia mucilage respectively followed by CCl₄ (0.5 ml/kg i.p) daily once for 7 days. Groups VI-VII were treated with ethyl acetate extract of M. erythrophylla stem at doses of 100 and 200 mg/kg p.o. in acacia mucilage respectively followed by CCl₄ (0.5 ml/kg i.p) daily once for 7 days. After completion of treatment blood was collected, serum was separated and used for determination of biochemical parameters.

COLLECTION OF BLOOD SAMPLES

All the animals were sacrificed on 7th day under light ether anesthesia. The blood samples were collected separately in sterilized dry centrifuge tubes by puncture retro-orbital plexes and allowed to coagulate for 30 min at 37 °C. The clear serum was separated at 2500 rpm (Microcentrifuge) for 10 min and subjected to biochemical investigation viz., serum glutamic oxaloacetic transaminase (SGOT), serum glutamic Pyruvate transaminase (SGPT), Alkaline phosphatase (ALP) and Total Bilirubin (TB).

ASSESSMENT OF LIVER FUNCTION

The Serum glutamic oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) were estimated by UV kinetic method in which both SGOT and SGPT were assayed based on enzyme-coupled system; where keto acid formed by the aminotransaminase reacts in a system using NADH. The coenzyme is oxidized to NAD and the decrease in absorbance at 340 nm for SGOT malate dehydrogenase (MDH) reduces to malate with simultaneous oxidation of NADH to NAD. The rate of oxidation of NADH is measured, where as SGPT the pyruvate formed in the reaction is converted to lactate by lactate dehydrogenase. Estimation of Alkaline phosphate (ALKP) involves hydrolysis of P-nitrophenyl phosphate by alkaline phosphatase to give P-nitrophenol, which gives yellow color in alkaline solution. The increase in absorbance due to its formation is directly proportional to alkaline phosphate (ALKP) activity. Estimation of total bilirubin (TB) involved the reaction of bilirubin with diazotized sulfanilic acid to form an azocompound, the color of which is measured at 546 nm. All the estimations were carried out using standard kits in semi auto analyzer Screen Master 3000.

HISTOPATHOLOGICAL STUDIES

The isolated liver specimens were trimmed to small pieces and preserved in formalin (10%) solution for 24 hrs. The liver specimens were subjected to dehydration with acetone of strength 70, 80, 100 % respectively, each for one hour. The infiltration and impregnation was done by treatment with paraffin wax twice each time for one hour. Specimens were cut into sections of 4-6 µm thickness and were stained with haemotoxylin and eosin (H-E) and later the microscopic slides of the liver were photographed in light microscope (Axioistar plus).

STATISTICAL ANALYSIS

Results of biochemical estimation were reported as mean ±SEM for determination of significant inter group difference was analysed separately and one way analysis of variance (ANOVA) was carried out. Dunnet’s test was used for individual comparisons

The effect of ethyl acetate and methanol extracts of M. erythrophylla stem on CCl₄ induced liver damage in rats with reference to biochemical changes in serum is shown in table (1). Percentage decrease or increase was calculated by Histopathology of liver tissues (a) Group I—section shows central vein surrounded by hepatic cord of cells (normal architecture). (b) Group II—section shows patches of liver cell necrosis with inflammatory collections, around central vein. (c) Group III—almost near normal. (d) Group IV—inflammatory collections around central vein and focal necrosis with sinusoidal dilatation. (e) Group V—less inflammatory cells around
central vein, absence of necrosis. (f) Group VI—less inflammation around dilated central vein. (g) Group VII—minimal inflammatory cellular infiltration. Almost near normal liver architecture. Regeneration of hepatocytes around central vein.

Table 1

Effect of different Extracts of of *M. erythrophylla* stem on carbon tetrachloride -induced toxicity in rats.

<table>
<thead>
<tr>
<th>Groups</th>
<th>SGOT (IU/L)</th>
<th>SGPT (IU/L)</th>
<th>ALP (IU/L)</th>
<th>TB (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>123.83±1.70</td>
<td>82.66±1.54</td>
<td>158.33±2.20</td>
<td>1.06±0.08</td>
</tr>
<tr>
<td>CCL4 0.5 ml/kg.b.w</td>
<td>997.66±22.74</td>
<td>736.0±17.57</td>
<td>488.48±8.23</td>
<td>4.48±0.17</td>
</tr>
<tr>
<td>Sylimarin 100mg/kg</td>
<td>223.16±1.40</td>
<td>164.50±1.60</td>
<td>185.16±2.80</td>
<td>1.7±0.13</td>
</tr>
<tr>
<td>MEME 100mg/kg</td>
<td>485.16±1.88</td>
<td>395.16±2.57</td>
<td>373.83±1.53</td>
<td>3.25±0.07</td>
</tr>
<tr>
<td>MEME 200mg/kg</td>
<td>429.33±0.88</td>
<td>314.83±1.19</td>
<td>315.5±1.25</td>
<td>2.63±0.13</td>
</tr>
<tr>
<td>EEME 100mg/kg</td>
<td>419.16±1.07</td>
<td>341.16±1.19</td>
<td>287.5±1.72</td>
<td>2.78±0.04</td>
</tr>
<tr>
<td>EEME 200mg/kg</td>
<td>365.66±1.20</td>
<td>285.66±1.33</td>
<td>245.33±1.22</td>
<td>2.33±0.08</td>
</tr>
</tbody>
</table>

EEME –Ethyl acetate extract of *Mussaenda erythrophylla*, MEME-Methanol extract of *Mussaenda erythrophylla*. Values are expressed in mean ± SEM, n=6, in each group. **Significant increase compared to Control (P≤0.01), ***Significant reduction compared to Control. (P≤0.01),

Table-2

Percentage decrease in levels of biochemical parameters due to treatment with different Extracts of of *M.erythrophylla* stem.

<table>
<thead>
<tr>
<th>Treated with</th>
<th>% Decrease Biochemical Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SGOT</td>
</tr>
<tr>
<td>Silymarin 25mg/kg</td>
<td>83.63</td>
</tr>
<tr>
<td>MEME 100mg/kg</td>
<td>58.64</td>
</tr>
<tr>
<td>MEME 200mg/kg</td>
<td>65.03</td>
</tr>
<tr>
<td>EEME100mg/kg</td>
<td>66.20</td>
</tr>
<tr>
<td>EEME 200mg/kg</td>
<td>72.32</td>
</tr>
</tbody>
</table>

EEME –Ethyl acetate extract of *Mussaenda erythrophylla*, MEME-Methanol extract of *Mussaenda erythrophylla*. **
Comparative hepatoprotective activity of ethyl acetate and methanol extracts of M. erythrophylla stem on CCl4-induced toxicity in rats

% Reduction in biochemical parameters

- SGOT
- SGPT
- ALP
- TB

Extract doses:
- Silymarin 25mg/kg
- MEME 100mg/kg
- MEME 200mg/kg
- EEME 100mg/kg
- MEME 200mg/kg
Figure (a) Representative photographs of histopathological changes showing effect of the test material on the rats intoxicated with carbon tetrachloride. a. normal control, b. Carbon tetrachloride 0.5ml/kg.i.p., c. silymarin 25mg/kg.p.o., d.e. Methanolic extract (100mg/kg, 200mg/kg.p.o.), f.g. ethyl acetate extract (100mg/kg, 200mg/kg.p.o.)
DISCUSSION AND CONCLUSION

The carbon tetrachloride mechanism begins with the trichloromethyl radical (·CCl₃) by the action of the mixed function of cytochrome P-450 oxygenase system. This free radical, which is initially formed as unreactive, reacts very rapidly with oxygen to yield a highly reactive trichloromethyl peroxy radical (·OOCCl₃). Both radicals are capable of binding to proteins, lipids or abstracting a hydrogen atom an unsaturated lipid, thus initiating lipid peroxidation. This process of lipid peroxidation can significantly damage hepatic plasma membranes. The increased levels of SGOT, SGPT, ALP and TB are conventional indicators of liver injury. The ability of hepatoprotective drug to reduce the injurious effect or to preserve the normal hepatic physiological mechanisms, that have been disturbed by a hepatotoxin, is the index of its protective effect. Hepatocellular necrosis leads to evaluation of the serum marker enzymes, which are released from the liver in blood. The present study revealed a significant increase in the activities of SGOT, SGPT, ALP and TB levels on exposure to CCl₄ indicating considerable hepatocellular injury. Administration of both ethyl acetate extract and methanol extracts at two different dose levels attenuated the increased levels of the serum enzymes, produced by CCl₄ and caused a subsequent recovery towards normalization almost like that of silymarin treatment.

The hepatoprotective effect of the drugs was further concluded by the histopathological examinations of the liver sections which reveal that the normal liver architecture was disturbed by hepatotoxin intoxication. In the liver sections of the rats treated with ethyl acetate extract and methanolic extract and intoxicated with CCl₄, the normal cellular architecture was retained as compared to silymarin, thereby confirming the protective effect of the extracts of M. erythrophylla.

Accordance with these results, ethyl acetate extract and methanolic extract at different dose levels offer hepatoprotection dose dependent activity. But Group VII (ethyl acetate extract 200mg/kg.b.w.p.o) is more effective than all other groups and it may be hypothesized that rich content of flavonoids may be responsible. The hepatoprotective activity of these drugs might be due to stabilization of the membrane inhibiting effect on lipid peroxidation or due to their stimulatory effects on hepatic regeneration. The protective action may be due to scavenging effect of free radicals. Hepatoprotective action of certain phytoconstituents like flavonoids, saponins, triterpenoids, has been well documented in the literature. The author some phytoconstituents like 5-hydroxy-7, 4'-dimethoxy flavones, β-sitosterol, 3-iso cumaryloxycyclopropane-1-oic acid, 4'-hydroxy-3-methoxy cinnamic acid, was isolated from ethyl acetate extract of M. erythrophylla. These phytoconstituents are alone or in combination responsible for hepatoprotective activity. In conclusion this study confirms the therapeutic potential of stem of M. erythrophylla.

ACKNOWLEDGMENTS

The authors acknowledge UGC for financial support to M.Chinna Eswaraiah to carry out this research work.
3. Weimin Zhao, Rensheng Xu, Guowei Qin, Tomax vaisear, Min s, lee, Saponins from phytoc hemistry, 42, 1996, 1131-1134.
AUTHOR AFFILIATIONS:

1. Anurag Pharmacy College, Kodad, Nalgonda (Dt),

2. University College of Pharmaceutical Sciences, Andhra University, Andhra Pradesh, India

ADDRESS FOR COMMUNICATION:

Dr. M. Chinna Eswaraiah, M.Pharm., Ph.D.
Associate Professor
Anurag Pharmacy College
Ananthagiri (V), Kodad (M),
Nalgonda (Dt), Pin No:
E-mail: eswarmaram@yahoo.co.in
eswarphd@gmail.com

Mobile no: 9948598787